So, in a linear model, parameters are set implicitly:
fit <- lm(Header.7 ~ Header.1 + Header.2, data=...)
corresponds to the model:
Header.7 = a * Header.1 + b * Header.2 + c
In a non-linear model, you must explicitly specify the parameters, as @mrip shows. Of course, in a nonlinear model, the model formula can be arbitrarily complex:
fit <- nls(Header.7 ~ exp(a*Header.1 + b/Header.2), data=..., start=c(...))
Finally, a run is optional: nls (...) will make an assumption. But there is no guarantee that the model converges to significant parameter values ββor even converges at all.
source share