Below is a comparison of the performance of the three most common answers using a Jupyter laptop. The input is a random allowed matrix of size 1 M x 100 KB with a density of 0.001, containing 100 M non-zero values:
from scipy.sparse import random matrix = random(1000000, 100000, density=0.001, format='csr') matrix <1000000x100000 sparse matrix of type '<type 'numpy.float64'>' with 100000000 stored elements in Compressed Sparse Row format>
io.mmwrite / io.mmread
from scipy.sparse import io %time io.mmwrite('test_io.mtx', matrix) CPU times: user 4min 37s, sys: 2.37 s, total: 4min 39s Wall time: 4min 39s %time matrix = io.mmread('test_io.mtx') CPU times: user 2min 41s, sys: 1.63 s, total: 2min 43s Wall time: 2min 43s matrix <1000000x100000 sparse matrix of type '<type 'numpy.float64'>' with 100000000 stored elements in COOrdinate format> Filesize: 3.0G.
(note that the format has been changed from csr to coo).
np.savez / np.load
import numpy as np from scipy.sparse import csr_matrix def save_sparse_csr(filename, array): # note that .npz extension is added automatically np.savez(filename, data=array.data, indices=array.indices, indptr=array.indptr, shape=array.shape) def load_sparse_csr(filename): # here we need to add .npz extension manually loader = np.load(filename + '.npz') return csr_matrix((loader['data'], loader['indices'], loader['indptr']), shape=loader['shape']) %time save_sparse_csr('test_savez', matrix) CPU times: user 1.26 s, sys: 1.48 s, total: 2.74 s Wall time: 2.74 s %time matrix = load_sparse_csr('test_savez') CPU times: user 1.18 s, sys: 548 ms, total: 1.73 s Wall time: 1.73 s matrix <1000000x100000 sparse matrix of type '<type 'numpy.float64'>' with 100000000 stored elements in Compressed Sparse Row format> Filesize: 1.1G.
cPickle
import cPickle as pickle def save_pickle(matrix, filename): with open(filename, 'wb') as outfile: pickle.dump(matrix, outfile, pickle.HIGHEST_PROTOCOL) def load_pickle(filename): with open(filename, 'rb') as infile: matrix = pickle.load(infile) return matrix %time save_pickle(matrix, 'test_pickle.mtx') CPU times: user 260 ms, sys: 888 ms, total: 1.15 s Wall time: 1.15 s %time matrix = load_pickle('test_pickle.mtx') CPU times: user 376 ms, sys: 988 ms, total: 1.36 s Wall time: 1.37 s matrix <1000000x100000 sparse matrix of type '<type 'numpy.float64'>' with 100000000 stored elements in Compressed Sparse Row format> Filesize: 1.1G.
Note : cPickle does not work with very large objects (see this answer ). In my experience, it did not work for a 2.7M x 50k matrix with non-zero 270M values. np.savez worked well.
Conclusion
(based on this simple test for CSR matrices) cPickle is the fastest method, but it doesnβt work with very large matrices, np.savez only a little slower, and io.mmwrite is much slower, creates a larger file and restores the wrong format. So np.savez is the winner here.